Overview
With more than 4,000 recording sites sampled at 25 kHz, the CMOS chip allows extracellular recordings at very high resolution. The possibility to visualize signal propagation even on the sub-cellular level especially qualifies the CMOS-MEA5000-System for experiments interested in network functionality.
Cell Culture
Neuronal Networks
Dissociated cultures can be grown from primary or stem cell derived neurons and their activity studied on the CMOS-MEAs. Signals from hundreds or thousands of cells as well as signal propagation from cell to cell can be analyzed.
CMOS-MEA Application Note Cortical Neuron Culture


Spike Sorting
The unique spike sorting implemented in the CMOS-MEA-Tools software takes advantage of the redundant information gathered by multiple sensors recording the signals of an individual cell. This allows fully automated, unsupervised spike sorting. The user can modify all parameters of the algorithm manually, or adjust the sensitivity with a simple slider interface.
Fully automated and easy to use spike sorting of a neuronal culture with one click
Retina
Axonal Signal Propagation
Using Spike Triggered Averages, it is possible to isolate repetitive events associated with spikes recorded on a specific channel. This method will enhance small signals often hidden in the noise and make, for example, signals traveling along axons and dendrites visible. This allows you to map functional connections along the sensor area.
Propagation of an average action potential along a single unmyelinated axon of a rat ganglion cell.
Details can be found in the paper of H.Stutzki et al. in Frontiers Cell. Neurosci. 8:38 (2014).
Light Induced Spiking Activity
CMOS-MEA Application Note Retina
Brain Slice
Activity Over Large Brain Areas
Not only spikes, but also traveling waves of LFPs, can be mapped so precisely that it would be possible to guess the anatomy of a slice preparation just from the recorded activity.
Bicuculline induced activity of an organotypic hippocampal slice